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On Damage-Spreading Transitions 
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We study the damage-spreading transition in a generic one-dimensional 
stochastic cellular automaton with two inputs (Domany-Kinzel model). Using 
an original formalism for the description of the microscopic dynamics of the 
model, we are able to show analytically that the evolution of the damage 
between two systems driven by the same noise has the same structure as a 
directed percolation problem. By means of a mean-field approximation, we map 
the density phase transition into the damage phase transition, obtaining a 
reliable phase diagram. We extend this analysis to all symmetric cellular 
automata with two inputs, including the lsing model with heat-bath dynamics. 

KEY WORDS:  Damage spreading; directed percolation; stochastic cellular 
automata; disordered systems; symmetry breaking. 

1. I N T R O D U C T I O N  

In this paper we deal with the problem of the evolution of two replicas of 
a Boolean system (cellular automaton)  that evolve stochastically under the 
same realization of the noise. The system is defined on a regular lattice of 
L sites and evolves in discrete time steps. We limit the explicit analysis to 
one-dimensional systems, but the results can be extended to higher dimen- 
sions. 

Let us indicate the time with the index t = 1 ..... ~ and the space with 
i =  0, 1 ..... L -  1. All the operations on the space index i are assumed to be 
modulo L. The state variables a(i, t) can assume the values 0 or 1 (Boolean 
variables). The evolution of a(i, t) is given by probabilistic transition rules 
and depends on a small number  of neigboring sites; in its simplest form, 
a(i, t) depends only on the state of the two nearest neigbors. 
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In order to simplify the notation, we write a + = c r ( i + l , t ) ,  

a _  = a(  i - 1, t ), a '  = a(  i, t + 1). The evolution rule can be written as 

a' =f(a_ ,  or+) 

Since the number of possible values of the couple (cr_, a+ ) is four, the 
function f is usually specified by giving the four transition probabilities 
r(ty_, a+ --* 1 ) from each possible configuration to one: 

r(0, 0 ~  1 ) = p o  

r(0, 1 ~ l ) = p l  

r(1, 0 ---, 1 )=p2  

r(1, 1 ~ 1)=P3 

(1) 

The normalization condition gives r ( a ,  a+ ~ 0 ) =  1 -  r ( a _ ,  tr+ ~ 1). 
All the sites of the lattice are generally updated synchronously. Except 

for deterministic cellular automata, for which the transition probabilities 
are either zero or one, we do not expect strong differences between parallel 
and sequential updating. 

This schematization naturally arise in the modeling of several systems 
(contact processes) in physical and biological investigations. It was intro- 
duced by Domany and Kinzel I1" 21 and can be considered the prototype for 
all local stochastic processes. For a short review of the applicability of this 
model, see refs. 3 and 4. 

In the thermodynamic limit, the Domany-Kinzel  (DK) model exhibits 
a phase transition from an ordered to a disordered phase for Po = 0. The 
ordered configuration is a ( i ) = 0  for all i (adsorbing state). The order 
parameter is the asymptotic density m = lim,_ ~_ lime . . . .  re(t, L), where 

a(i, t) m(t, L ) = ~  i=o 

In the following, the symbol 0~ will refer to the critical surface that 
separates the region m = 0 from m > 0. 

This transition has been studied mainly for the symmetric case p~ = P2. 
Except for a phenomenological renormalization study, ~5~ the transition line 
has been found numerically to belong to the universality class of directed 
percolation, which is a particular case of the model. The disagreement for 
the renormalization group results can originate from finite-size effects. For 
the asymmetric case p, ~P2 ,  it has been claimed ~61 that the phase transi- 
tion belongs to a different universality class (mean field). 



On Damage-Spreading Transitions 153 

The existence of an adsorbing state is a nonequilibrium feature of the 
model, allowing the presence of a phase transition also in a one-dimen- 
sional (spatial) system. It is shown is Section 4 that in the DK model there 
can be two adsorbing states, a ( i ) = 0  and a ( i ) =  1, related by a simple 
transformation of the transition probabilities. The two transition lines meet 
at the point M(p~ = 1/2, P3 = 1 ). This point corresponds to the problem of 
a random walk in one dimension, and thus exhibits mean-field exponents. 

A powerful tool for the investigation of this model is the study of 
damage spreading. One considers two replicas a and r / o f  the same model 
with different initial conditions (they can be completely uncorrelated or dif- 
fer only in some sites). The two replicas evolve under the same realization 
of the stochasticity. The difference at site i and at time t between the two 
configurations is given by 

h(i, t ) =  a(i, t)Gq(i, t) 

where the symbol G represents the sum modulo two (exclusive OR, 
XOR). Since we use Boolean variables (a, b e  {0, 1}), one can interpret 
the exclusive-or as a@b=a+b-2ab .  When mixing XOR and AND 
(represented as a multiplication), one can use the algebraic rules for the 
sum and the multiplication. 

The order parameter for the damage-spreading transition is the 
asymptotic Hamming distance H =  lim,_ ~ limL_ ~ H(t, L) defined as 

H(t, L)= h(i, t) 
i ~ O  

using the usual sum. 
The critical surface that separates the region H = O  from H > O  is 

indicated with the symbol y. 
In the DK model, numerical and analytical investigations ~6-~~ 

indicated the existence of a damage spreading phase. 
The damage phase transition can be thought of as an ergodicity-break- 

ing transition: in the phase where the damage disappears, all initial condi- 
tions asymptotically follow a trajectory that does not depend on the initial 
conditions, but only on the realization of the noise. 

The critical exponents for the density and the damage transitions in 
the plane (p~ = P2, Po = 0 )  are numerically the same. t6"3~ It has been con- 
jectured t~'~2~ that all continuous transitions from an adsorbing to an 
active state belong to the universality class of the DK model (and thus of 
directed percolation), and that the same universality class should include 
all damage-spreading transitionsF 3~ 

822/85/I-2-11 
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Here we want to investigate the connection between the density phase 
transition and the damage phase transition in the DK model. We have to 
carefully describe the dynamics of the model: the position of the transition 
line depends on the way in which the randomness is implemented in the 
actual simulations. In Section 2 we introduce the formalism that allows an 
exact description of how randomness is implemented in the model. We are 
thus able to write down the evolution equation for the spins and to obtain 
the evolution equation for the distance between two replicas. The structure 
of the latter equation corresponds to the DK model with Po = 0. We con- 
clude that the universality class of damage spreading is, at least for this 
simple case, that of directed percolation. In Section 3 we obtain the phase 
diagram of the DK model by mapping the transition line for the density to 
the transition line for the damage by means of mean-field approximations, 
In Section 4 we show that one can infer the existence of a phase transition 
for the damage also in cases for which there is no phase transition for the 
density and that there are two disjoint regions in the parameter space for 
the damage spreading. Finally, we give conclusions and open questions in 
the last section. 

2. THE D A M A G E - S P R E A D I N G  TRANSITION 

Let us start from a simple example, the dilution of rule 90 (in 
Wolfram's notation) ~3~ that will also serve to fix the notation. Rule 90 is 
a deterministic rule that evolves according to 

OJ=O "_ (~0"+ 

The transition probabilities for the diluted rule 90 are 

r(0, 0 ~  1 ) = 0  

r(0, 1 ~  1 ) = p  

r(1, 0--* 1 ) = p  

r(1, 1 ~ 1 ) = 0  

where p is the control parameter of the model. 
In order to apply rule 90 for a fraction p of sites and rule 0 (all con- 

figurations give 0) for the rest, one usually extracts a random number 
r = r(i, t) for each site and at each time step and chooses the application of 
rule 90 or rule 0 according to r <  p or r ~> p, respectively. 

We can easily write the explicit expression for this rule by means of the 
function [ .  ], assuming that [ logical proposi t ion ] takes the value 1 if logical 
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proposition is true and 0 otherwise (this interpretation of logical propositions 
is the standard one in C language). Finally, we have for the diluted rule 90 

a'=[ r < p]((r_ (~a +) (2) 

From a different point of view, one can extract all random numbers 
r(i, t) before the simulation and attach them to the sites of the space-time 
lattice, regardless of their usage. The random numbers are thus similar to 
a space-time quenched (disordered) field. 

Once given the set of random numbers, the evolution is completely 
deterministic, and the evolution function depends on the lattice position 
(spatial and temporal) via the random numbers r(i, t). One can alternatively 
define the model stating that some deterministic functions are randomly 
distributed on the space-time lattice according to a certain probability dis- 
tribution. This description is very reminiscent of the Kauffman model/14) 

The damage spreading can be considered a measure of the stability of 
the set of possible trajectories, averaging over the realizations of the noise. 
The (maximum) Lyapunov exponent is a measure of the instantaneous 
effects of a vanishing perturbation on a trajectory of a dynamical system. 
Since the state variables of cellular automata assume only integer values, 
one has to extend the definition to a finite initial distance (and to finite 
time steps), thus taking into account the possibility of nonlinear effects. For 
cellular automata, the smallest initial perturbation corresponds to a dif- 
ference of only one site between the two replicas. The short-time effects of 
a (vanishing) perturbation define the analog of the derivatives for a con- 
tinuous system. (~5~ The study of the equivalent of the usual (linear) 
Lyapunov exponent for deterministic cellular automata allows a classifica- 
tion of the rules according to the trend of the damage/~61 The general 
problem of damage spreading can thus be considered equivalent to the 
study of the nonlinear Lyapunov exponent (i.e., finite initial distance and 
finite evolution times) for space-time-disordered cellular automata. 

Using the concept of Boolean derivatives, (~51 we develop a Boolean 
function f(a, b) as 

f(a, b)=fo @ f ,a@ f,-b| f3 ab 

where the Taylor coefficients are 

fo = f (0 ,  0) 

f~ = f ( 0 ,  1 ) O f ( 0 ,  0) 

f2 = f (  1, O) G f(O, O) 

f a - - f ( 1 ,  1 ) 0 ] ( 0 ,  1 ) O f ( l ,  O)Of(O,  O) 
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One can verify the previous expression by enumerating all the possible 
values of a and b. 

Using the bracket [ - ]  notation, we have that the transition 
probabilities (1) correspond to 

f(0, 0)= [ro < Po] 

f(0,  1 ) = [ r t  <p~]  

f (  l, O)=[rz < p,_] 

f(1,  1)= [ r3<p3  ] 

where the random numbers rj(i, t) belong to the interval [0, 1) and con- 
stitute the quenched random field. We neglect to indicate the space and 
time indices for simplicity. 

The Taylor coefficients become 

fo = [ ro < Po] 

f l  = [rl  < p l ]  @ [ ro<Po]  

f2 = [r_, < p_,] @ [r 0 < Po] 

f3 = [r3 < P3] I~ [rz < p_,] �9 [rl < Pl ] G [1"o < P0] 

and 
In the following we shall assume Pl =P2 and r~ = r2, so that f ,  =f,_ 

f3 = [1"3 < P3] (~ [ro < Po] 

The correlations among the random numbers rj (at same space-time 
position) affect the position of the damage critical surface y, as pointed out 
by Tom6, ~~ Grassberger, ~3~ and Domany, 1~7~ but not the position of the 
density critical surface ~. Only a careful description of how the randomness 
is implemented in the model completely specifies the problem of damage 
spreading. In principle one could study the case of generic correlations 
among these random numbers. Here we consider only two cases: either all 
the rj are independent [case (i), critical surface ~'i] or they are all identical 
[case (ii), critical surface )'ii]- 

The evolution equation for the single site variable a = a(i, t) is 

a ' =  [ ro<Po]  ~ ( [ r ,  < P l ]  @ [ro<Po])(a_ ~ a + )  

(~) ([r3 < P33 O [ ro<  po])a_ a+ (3) 
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In the case p o = 0 ,  Eq. (3) assumes the simpler form 

a ' =  [r l  < P l ] ( a -  ( ~ + ) @  [r3 < 13]o -  o'+ (4) 

and the correlations among the rj do not affect the evolution of a. 
We can substitute the evolution equation for the replica J l = ~ O h ,  

with the evolution equation for the damage h = e G q, obtaining 

h' =([-r  I < Pl ]  ~ [ro < P o ]  0 ( [ r 3  < P 3 ]  (~ [ro < P o ] ) a + )  h_ 

@(Jr ,  < p , ]  G [ro < P o ]  (~ (Jr3 < P 3 ]  (~ [ro < P o ] )  ~ - ) h +  

(~ (Jr3 < P 3 ]  I~) [ro < po])  h h+ (5) 

This equation has the same structure as the evolution equation of the 
original model with Po = 0, Eq. (4). Remembering that only for this value 
ofpo does the DK model exhibit a phase transition, we have a strong argu- 
ment for the correspondence between directed percolation and damage- 
spreading transitions. However, also in the symmetric case Pl =P2  and 
r~ = r2, the evolution equation of h is symmetric only in average, and one 
has to take into consideration the correlations between a and a+ .  As dis- 
cussed before, these correlations can be included in the definition of the 
DK model, which specifies only the transition probabilities. It remains to 
be proved that all these versions do belong to the same universality class. 

For  the rest of this section we assume p o = 0 .  Previous numerical 
investigations showed that on this plane the two surfaces c~ and y meet at 
the point Q = (.~ 0.81, 0). Inserting the value P3 = Po = 0 in Eq. (5), we see 
that the evolution law for h is the same of that for G, and so both trans- 
itions coincide on this line. This corresponds also to the dilution of rule 90. 

Since the rest of y lies away from e, the correlations among sites decay 
rapidly in time and space. This allows us to use a mean-field approxima- 
tion. In the simplest form, we replace or(i, t) with a random bit that 
assumes the value one with probability m. With this assumption Eq. (5) 
becomes 

h' = ([r ,  < Pl ] (~ [1"3 < P3] [r4 < m] ) h_ 

O ( [ r ~ < p l ] ( ~ [ r 3 < P 3 ] [ r s < m ] ) h +  O [ r 3 < p 3 ] h _ h +  (6) 

where r 4 and r 5 are independent random numbers. This is a rather drastic 
approximation, both because of correlations and because the same g(i, t) is 
shared by h ( i -  1, t +  1) and h( i+ 1, t+  1). Nevertheless, we can assume 
this equation as a starting point in our derivation of the phase diagram. 
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We now want to remap this model onto the original DK model, 
assuming that the asymmetry (r4 # rs), which in average vanishes, does not 
strongly affect the transition. 

The remapped transition probabilities b are 

~(0, 0 ~ 1 ) = P o = 0  

f(0, 1 ~ 1)=/~t = zt([rt < P t ]  ~[r3<P3][r5<m]) 

~(1, 0 4  1)=/51 = rc([rl < P l ]  ~ [ r 3  <P3][r4<m])  

?( 1, 1 --* 1) = /~3  = re(Jr 3 < P3] (  [/'4 < m] ~ [1" 5 < m] ~ l ) )  

where n ( f ( r ) ) =  ~o ~ dr(r)is the probability that the Boolean function f of the 
random number 1" takes the value one. 

For  case (i) (rl # r3), we have 

Pl =Pl +P3m--2Pl  P3 m 

/53 = P3( 1 - 2m( 1 - m)) 
(7) 

while for case (ii) (r I = r  3) 

Pl = m l p l - P 3 l  +(1  - m )  Pl 

/~3 = P3( 1 -- 2m( 1 -- m) ) 

Since y lies in the Pt >P3 region, one has for case (ii) 

(8) 

Pl = P l - m p 3  

Notice that for P3 = 0 or for m = 0, Yi and )Pii coincide, as already 
noticed numerically by Grassberger/3~ 

Given a certain point (Pl,  P3), it belongs to y [i.e., H(p~, p 3 ) = 0 ]  if 
the point (P~,/53) belongs to ct [i.e., m(pl,  P3) = 0 ] .  In order to draw the 
phase diagram for the Hamming distance, one has to know the value of the 
density m in all the parameter space, and in particular the position of ~. 
Unfortunately, we do not have a simple expression for these quantities; in 
the next section we use an approximation in order to draw a rough phase 
diagram. However, we are able to demonstrate that ~ and y are tangent at 
point Q. 

The slope q of the normal to ct at Q can be given as 

am lam l 
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Considering that ), = H(pl,  P 3 ) =  0 ~ m(/~l(pl, P3), ff3(Pl, P3)) = 0 ,  the 
partial derivatives of H are given by 

OH 

•Pl 

OH 

Om 0~1 Om 0~3 +-~-z-_ 
Op, Op, OP3 0p, 

Om 0~1 Om c~fi 3 
- t - - -  

Op3 0pl ap3 ap3 

One has to take into account that/~j depends on p; both directly and 
via m. Inserting the relations (7) or (8) and considering that at point 
Q, in = P3 = 0, one obtains 

, O g l O g l =  
q=S p,/ p IQ q 

Since we know from numerical experiments and from all the mean- 
field approximations except the very first one that the slope of ct at Q is 
negative in the (p~, P3) plane, the tangency of y to ~ implies a reentrant 
behavior for the damage transition curve, as observed in ref. 9. 

3. THE PHASE D I A G R A M  

The problem of sketching an approximate phase diagram for the 
damage in an analytical way has been dealed with by several 
authors/7.9. ~01 Since any equation for the damage depends on the behavior 
of one replica, there are two sources of error to be controlled: the 
approximations for the evolution of one replica and that for the difference 
(or for the other replica). As a consequence, all approximation schemes 
proposed so far involve a large effort for a poor  result. Our method is able 
to exploit the knowledge of the density phase to study the damage phase 
transition. There are several methods that rapidly converge to a good 
approximation of ct; to our knowledge the best ones are the phenomeno- 
logical renormalization group ~51 and the cluster approximation (local 
structure) 1~8~ improved by finite-size scaling. This latter method can also 
give a good approximation of the behavior of m(po, Pl, P3) at any point. 

Since here we are not interested in numerical competitions, we use the 
high-quality data for the density transition line from ref. 3 combined with 
a first-order mean-field approximation for the density. The intersection of 

with P0 = 0 has been approximated by a fifth-order polynomial 

5 
p3 = a,p', (9) 

i~O 
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The simplest mean-field approximation for the asymptotic density m gives 

1 - -  2pl 
m = - -  (10) 

P 3 -  2 P l  

By using these approximations one obtains from Eq. (7) or (8) the 
curves reported in Fig. 1, together with the presently best numerical 
results, t3j The main source of error is that in this mean-field approximation 
the surface ct, eq. (9), does not corresponds to the zero of the density m, 
Eq. (10). This is particularly evident in the absence of reentrancy of Yl and 
~'2. Nevertheless even this rough approximation is able to reproduce 
qualitatively the phase diagram and to exhibit the influence on the damage 
critical line of the different implementations of randomness. Notice that the 
damage curve from ref. 3 corresponds to the implementation of Eq. (7). 
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Fig. 1. Phase diagram for the density and the damage in the DK model for Po = 0. The curve 
labeled ct is the density transition line and the one labeled ), is the damage transition line from 
ref. 3; the curves labeled Yl and )'ii correspond to mean-field approximations of Eqs. (7) and 
(8), respectively. 
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4. THE P o > 0  CASE 

The D K  model with arbitrary Po includes all one-dimensional sym- 
metric cellular automaton models or spin systems with two inputs. We can 
represent each possible model as a point in the three-dimensional unit cube 
parametrized by Po, Pl, P3. The general form of the transition probabilities 
from Eq. (5) is 

/~j = p, + (1 -2p , ) (mp3  +(1  - m )  Po) 

b3 = (Po +P3 - 2po p3)( 1 - 2m + 2m-') 
(11) 

There is a trivial transformation of the original D K  model. One can 
invert (0 *-* 1) all the spins before and after the application of the rule. The 
new transition probabilities p'; are 

p~ = 1 - P3 

P'I = 1 - P l  

p~ = 1 - Po 

The critical plane P0 = 0 maps to P3 = 1, and the adsorbing state is now the 
configuration in which all spins are one. We indicate with the symbol ~' the 
critical surface obtained by this transformation. The point Q is mapped to 
the point Q ' =  (1, ~ 0.2, 1). The parameter  cube and the critical curves are 
reported in Fig. 2. This mapping suggests the presence of a damaged zone 
near the corner ( 1, 0, 1 ). 

In order to study the position of the critical surfaces for the damage, 
we numerically solved Eq. (11) combined with (9) in the very simple 
approximation m = 0.5. The results are reported in Fig. 2. Direct numerical 
simulations qualitatively agree with this picture. 

The one-dimensional Ising model in zero field with heat bath 
dynamics can also be expressed with this formalism. 

The local field g = g; for the one-dimensional Ising model is 

g = K((2a - I ) + (2a+ - 1 )) 

where K =/3.1"= .1/kB T is the rescaled coupling constant and ~ = 0, 1 the site 
variables (spin). The local field g can assume the values - 2 K ,  0, 2K. 

For  the heat bath dynamics, o'  takes the value one with probability p 
given by 

1 
P= 1 + e x p ( - 2 g )  
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Fig. 2. The parameter cube for the general symmetric cellular automata. The dashed curves 
c~ and c( label the intersections of the corresponding surfaces with the planes Po = 0 and P3 = 1, 
respectively, and correspond to the density phase transitions. The solid curves correspond to 
the intersection of the damage critical surl:aces (shaded)) ,  and 7' with the boundaries of the 
cube. The dot-dashed lines labeled w+ and ~o_ correspond to the existence line for the lsing 
model for positive and negative temperatures, respectively. The points M and M'  label the 
critical points of tile lsing model at zero temperature, and R corresponds to the limit of 
infinite temperature. The dotted line X corresponds to the damage in tile Ising model. 

The transition probabilities are 

P O = l +  ~ 

1 

1 
P3--1+ ~ 

where ( = e x p ( - 4 K ) .  Notice that P3 = 1 - Po. For T >  0, we have Po < 1/2, 
while for negative temperatures, p o > l / 2 .  The point po=P3=l/2 
corresponds to infinite T. 

The evolution equation for the site variable is 

a'=[r<po]@([r<pl]O[r<po])(a_ Oa+) 

~) ([1"< P3] I~) Jr< Po])  o" o'+ 
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where usually all Taylor coefficients depend on the same random number 
r=r(i, t). The existence line ~o+ for the Ising model with T > 0 ,  p~--1/2, 
p3 = 1 - P o ,  intersects 0c at M = ( 0 ,  1/2, 1). The existence line r  for T < 0  
ends at M'  = ( 1, 1/2, 0). The point R = ( 1/2, 1/2, 1/2) corresponds to T =  oo 
(see Fig. 2). 

The evolution equation for the Hamming distance h is equivalent to 
Eq. (5) with all ~)equal to r. Taking into account the correlations induced 
by the random numbers and that the magnetization is 1/2 except at the 
critical point, one obtains 

1 - 4  
2(1 +~)  

I - ~  

i.e., the line X = (p3=2p2, po=O) for positive or negative temperatures. 
The line Z intersects a( at point M for T =  0 • confirming that the sym- 
metry-breaking transition for the Ising model occurs at zero temperature. 

5. CONCLUSIONS AND PERSPECTIVES 

In this work we presented a formalism that allows the careful descrip- 
tion of Boolean algorithms for stochastic cellular automata (including spin 
systems like the Ising model). Using this formalism, we were able to derive 
the exact equation for the evolution of a damage between two replicas that 
evolve under the same realization of the noise. Using a mean-field 
hypothesis, we gave strong indications that the critical line for the damage 
phase transition belongs to the same universality class as that for the den- 
sity in the DK model, and thus as the directed percolation universality 
class. We mapped the density critical line to the damage critical line, 
obtaining the regions in the parameter space of a general symmetric 
cellular automaton where the replica symmetry breaking is to be expected. 
Our predictions are qualitatively confirmed by numerical simulations. 

Several questions remain to be answered. Among others: Is it possible 
to obtain similar results starting from a field description? What does the 
phase diagram for more general (asymmetric, three-input, etc.) cellular 
automata look like? 
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